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FOR NUMERICAL DIFFERENTIATION, 
DIMENSIONALITY CAN BE A BLESSING! 

ROBERT S. ANDERSSEN AND MARKUS HEGLAND 

ABSTRACT. Finite difference methods, such as the mid-point rule, have been 
applied successfully to the numerical solution of ordinary and partial differ- 
ential equations. If such formulas are applied to observational data, in order 
to determine derivatives, the results can be disastrous. The reason for this is 
that measurement errors, and even rounding errors in computer approxima- 
tions, are strongly amplified in the differentiation process, especially if small 
step-sizes are chosen and higher derivatives are required. 

A number of authors have examined the use of various forms of averaging 
which allows the stable computation of low order derivatives from observational 
data. The size of the averaging set acts like a regularization parameter and 
has to be chosen as a function of the grid size h. 

In this paper, it is initially shown how first (and higher) order single-variate 
numerical differentiation of higher dimensional observational data can be sta- 
bilized with a reduced loss of accuracy than occurs for the corresponding dif- 
ferentiation of one-dimensional data. The result is then extended to the multi- 
variate differentiation of higher dimensional data. The nature of the trade-off 
between convergence and stability is explicitly characterized, and the complex- 
ity of various implementations is examined. 

1. INTRODUCTION 

It is assumed that given observational data can be characterised by a model of 
the form 

(1) yj = f(jh) +cEj, h = i/n, j = (l,l ,Jd) E {tO,1, *... , n}d, 

where the function f E CP (IRd), for some appropriate choice of p, denotes the un- 
known trend, and the qj the measurement errors, which are assumed to be indepen- 
dent and identically distributed normal variables with expectation 0 and variance 

2 
a . 

The numerical differentiation problem consists in determining an approximation 
to the derivative Df of f, where D denotes a differentiation operator; e.g. 

(2) D 3 cp(x)a, P 

IpI<q 
where the cp(x) denote arbitrary coefficients, p = (P1,... ,Pd) with pi > 0, &3Px 
OPI x... &Pdxd, and IpI = P1+ +Pd. Examples include the Laplacian, divergence, 
gradient and curl operators as well as other partial derivatives. 
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Numerical differentiation is ill-posed, and standard finite difference formulas, 
which have proved very useful for the solution of partial differential equations, of- 
ten amplify the measurement error when applied to observational data. In partic- 
ular, for small step sizes h, the good approximation properties of a finite difference 
formula are completely masked by the amplified measurement errors. 

In [2], a scheme is proposed which allows one to construct stable estimates for 
the differentiation of one-dimensional observational data. This scheme uses aver- 
ages of finite difference approximations over different step sizes to approximate the 
derivatives. For second derivatives, one such scheme is given by [1] 

r 
(3) ~ y[2] := (2r + 1)-3h2 Yi+j+2h+12- 2Yi+j + Yi+j-27-l 

j=-r 

Even if the data yi are contaminated by observational errors of the above type, this 
approximation converges, as h -* 0, to the second derivative f(2) (ih) as long as r 
behaves like hs-1 with 0 < s < 0.2, and f has a continuous second derivative. 

In the sequel, similar formulas for partial derivatives are developed. For example, 
it will be shown that the second partial derivative 02 f0/X2 can be approximated 
in a stable manner by 

r r 
[2,0] (2r + l-4 h -2 \7 \j 

(4) ihl i2 = (r1 h E E Yil+j1+27-+1,i2+j2 
ji=-r j2= - 

-2yil+jl,i2+)2 + Yi1+j2-2r-1,i2+j2- 

The condition which guarantees convergence is r = hs-1 with 0 < s < 0.66. An 
independent analysis of a different class of methods for higher-order numerical dif- 
ferentiation of multi-dimensional observational data can be found in Muller [10, 
p-77ff]. 

Compared with numerical differentiation, which is local and sensitive to the 
presence of observational errors in the given data, numerical integration, which 
is non-local, is normally well-posed, in the sense that any numerical quadrature 
estimate of the value of the integral is not sensitive to random perturbations in the 
evaluation of the integrand. However, in higher dimensions, because of the non- 
local character of integration, an exponentially large number of function evaluations 
must be performed, as the dimension increases, in order to achieve a given accuracy 
for the numerical estimate of the integral. On the other hand, the stability of the 
resulting estimate, even in the presence of observational errors, is automatically 
guaranteed because integration is well-posed. This need for an excessive number of 
function evaluations is often referred to as the "Curse of Dimensionality" (cf. [11, 
pp. 1-2]). For example, consider the integral 

= f (x)du 

over the d-dimensional unit cube, where d, = dxl ... dxd. Classical multi-dimen- 
sional integration rules for the integral I use Cartesian products of one-dimen- 
sional rules and take, for uniform grids, the form 

17 = hd S WjYj. 
jC{0,... ,m}d 
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The most popular product rule is the one based on the trapezoidal rule. The 
approximation error of the trapezoidal rule is 0(h2), if all second partial derivatives 
02 f IXi2 are continuous. Because the total number of function evaluations required 
for this approximation is N = (n + I)d, the approximation error for the product 
trapezoidal rule is O(N2/d). Consequently, for a given scheme, in order to achieve a 
10 times decrease in the current approximation error, one requires a 10d/2 increase 
in the number of function evaluations. This yields an explicit characterization of 
the aforementioned "Curse of Dimensionality". 

Note. In other contexts, such as data smoothing (cf. Hastie and Tibshirani [8]), 
the increase in function evaluations associated with the increase in dimension is 
also viewed as a "curse". 

In numerical differentiation, there is no such curse. This is a direct consequence 
of the local nature of differentiation. In fact, in order to compute the derivative of a 
function at a certain point, only the behaviour of that function in the neighbourhood 
of that point needs to be known. For integration, however, the behaviour of the 
function throughout the domain of integration has an influence on the value of the 
integral. The interesting, even in some ways amazing, fact is that some of the "Curse 
of Dimensionality", associated with numerical integration, can help to "Cure" the 
"Curse of Ill-Posedness", associated with the evaluation of partial derivatives of 
nulti-dimensional observational data. The ramifications of this observation are the 
focus of this paper. 

2. FIRST ORDER DIFFERENTIATION OF TWO-DIMENSIONAL DATA 

2.1. One-dimensional averaging. By analogy with the model for observational 
data introduced in equation (1), it is assumed that the given two-dimensional ob- 
servational data have the form 

(5) Yi,j fi + ? h=1/n, fi,j= f(ih,jh), i,j E {0, 1,... n}, 

where the errors ci,j are taken to be independent normal random variables with 
mean 0 and variance a2. In addition, it is assumed throughout this section that 
f E C(3)(R2). Even though the errors depend on two spatial parameters i and j, 
they are only assumed to be sampled from a one-dimensional distribution, since 
each data point (observation, measurement) Yi,j of fij is performed in the same 
manner, independently of the spatial position defined by (ih, jh). 

A standard approximation for the partial derivative Of(x, y)/&x at the grid- 
points uses the midpoint rule 

(6) fJ(nmid) fi+l,j fi-1, 
2h 

These formulas are defined for all i,j, except in the vicinity of the boundary of the 
region on which the differentiation is being performed, where different rules must 
be applied depending on the regularity of f in the neighbourhood of the boundary. 
If one applies this mid-point rule to the data of equation (5) instead of the function 
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values fi<j, then one obtains 

7 (mid) Yi+1,j 
- Yi-1,j 

(7) 
f 

- 2h 

(8) f (ih + h, jh) -f (ih- h, jh) Ei+i,j - Ei-i,j 
2h 2h 

(9) (ih, jh) + h 0 (ih + sih, jh) + (i,j, s2 E (-1,1). 

Though the errors (ij = ( -Ei+ ,j-i_jj)/(2h) will be normally distributed ran- 
dom variables with zero mean and variance h-2U2/2, they will not necessarily be 
independent (e.g. (i+2,j and (i-2,j are not independent, because they involve the 
common term cij). However, the lack of independence is a minor matter com- 
pared with the value of the variance, which becomes arbitrarily large as the step 
size h tends to zero, since aX2 is fixed (even if quite small). Consequently, when 
evaluated on the observational data yij, the muid-point formula (6) fails to yield a 
convergent approximation to the partial derivative Of (ih, jh)/&x as the step size 
h tends to zero. This illustrates why standard finite difference formulas for partial 
differentiation will tend to be unstable when evaluated on observational data. 

The goal of this paper is the construction of stable alternatives to the standard 
formulas. The essence of the strategy to be adopted is encapsulated in the expres- 
sion (8). The approximation error, determined by the second term on the right 
hand side of (9), is 0(h2), and, consequently, is very small when h is small. Thus, 
the aim is to identify strategies which allow the error associated with (ij to be 
decreased at the expense of an increase in the approxtimation error. This kind of 
trade-off actually lies at the heart of any regularization method used to solve im- 
properly posed problems. It is also the basis for the variance-bias interpretation of 
data smoothing. 

For example, in standard numerical analysis texts, where it is tacitly assumed 
that one has control over the choice of the step length h, such a trade-off is achieved 
by defining the optimal choice h of h to be the value which guarantees that 

h203 
f (ih + sih, jh) = (i,j 

However, this strategy is limited to situations where the variance of (i,- is relatively 
small, such as occurs in exact numerical situations where the only error is computer 
rounding error. 

Consequently, in a deeper technical sense, it avoids the real issue as to how such 
a trade-off can be achieved as h -O 0. It is this aspect which is the focus of this 
paper. In fact, the key question being examined is: 

"For given data where the size of the step length h has already been 
determined, how does one perform the numerical differentiation in 
order to fully utilize all the available data and achieve the type of 
trade-off mentioned above." 

A similar interpretation holds for the kernel smoothing methods applied to 
the numerical differentiation of observational data by statisticians (cf. Wand and 
Jones [12]). 

If one keeps j fixed, numerical partial differentiation reduces to the classical 
one-dimensional situation, as is clear from equation (8). Stable finite difference 
formulas for first order differentiation, based on averaging, have been proposed by 
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Anderssen and de Hoog [2]. Such formulas achieve stability by averaging the values 
obtained from the application of the mid-point rule on a variety of different sized 
grids. In particular, consider the one-parameter family of mid-point rules 

'(mid) s f+s,j fi-sj s = 1f, 2,.. fi" I] - 
2sh si 2 

If one applies these mid-point rules to the data of equation (5) instead of the func- 
tion values fij, then they generate a one-parameter family of identically distributed 
normal random variables 

(mid) Yi+s,j 
- 

Yi-s,j 
- 

fi+s,j-fi-sj +Ei+s,j-is_ j s= . 
f~ i S] 2sh f=+,1 -21 ...-s, 

2sh ~2sh '+ 2sh 
with mean (Of (ih, jh)/&x + O(s2h2)) and variance 22r2/(2sh)2. These random 
variables are independent because, for s = 1, 2, ..., each is evaluated on different 
data Yi,j from equation (5). Consequently, for each i and j, one can average the 

-(mid) 
mid-point estimates f y to obtain the following random variable: 

(10) a~~mid) 1 I- (mid) 
( 1 0) .fi - - S f i,j [s] 

s=1 

(11) 2 E (fi+s,j - fi-8),r) +fi s2j+_,3 -isj,3r 
r 2sh 2rsh 

Its mean and variance are given, respectively, by 
r r 

r(&f (ih,jh)/0x + O(s2h2)), 2 E U2/(2rsh)2 
s=r s=J 

This is the approach pursued by Anderssen and de Hoog [2], though in greater 
generality than indicated here. Among other things, they showed that, if r behaves 
like O(h3) with 2 

< 13 < 1, then, asymptotically, this average has mean fAj and 
bounded variance. 

Subsequently, Anderssen et al. [1] examined, again for one-dimensional differ- 
entiation (but extended to orders higher than the first), "spatial neighbourhood 
averaging". Here, one first chooses a particular member of the one-parameter fam- 
ily by specifying the value of s. One then evaluates this mid-point formula on 
spatially adjacent grids as 

f(mid)ri Yi+k+s,j - Yi+k-s,j k 
fJi+k,jLIS 2sh k =-r, , 

and averages them to generate the following random variable: 

(12) ) mid) 1 - .(mid) 

(12) f fr+1~ fi?k, -IS 

(13) ~2r + 1 > 3(ik8j-f?ksj (r1s 
k=r 

(13) 2r + 1=- 2sh 1c=- 2(2r + 1)sh 

As long as r is less than the value of s, the individual random variables, corre- 
sponding to each mid-point formula, will be independent for k =-r, .. , r, since 

-(mid) 
each of the data values Yi,j entering the formulas fi+k,j [s], k = -r, , r, only 
appears once. Consequently, because the mean and variance of these individual 
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spatial mid-point formulas are, respectively, (Of ((i + k)h, jh)/0x + O(s2h2)) and 
2u2 /(2sh)2, it follows that their average is a normally distributed random variable 
with mean and variance given by 

1 r 
(&f ((i + k)h, jh) + O(s2h2j8 2 1 2 

2r + 1 X J 2r + k_ (2(2r + l)sh)2 

This step clearly indicates the additional technical considerations introduced by 
such spatial-neighbourhood averaging. In [1], as indicated above, one averages over 
different estimates of the same derivative, whereas, in this generalization, one is 
averaging over the same estimate of spatially-adjacent derivatives. The variance of 
the resulting random variable is easily computed (cf. Finney [7, Section 5.8]) to be 

2u2 

(2r + 1)(2sh)2 
The evaluation of the approximation error can be more complex, as one must aver- 
age over the approximation errors arising from each spatial contribution, as well as 
over the discretization errors. In particular, because of the standard Taylor series 
result that 

&f((i + k)h,jh) +&f ((i - k)h,jh) 
Ax +x 

-2f (ih, jh) +03 f ((i + 0 hi jh) 

-(mid) 
the mean of f i j can be rewritten as 

1 (A Of(ih, jh) / r 

2r + 1 KE x + O(k 2h 2)) + 2rS+ (\SOs2h2)). 

Consequently, the averaging of the individual approximation errors generates two 
terms, which will be referred to as the "averaging error" and the "averaged 
discretization error". In [1], as indicated above, the averaging is arranged so that 
one only has to analyse an averaged discretization error, whereas, in the spatial 
neighbourhood averaging being examined here, one will have both. Because 0 < 
k < r and r k2 r3_, the averaged discretization error will dominate and the 

( =id) 
mean of fi2j becomes, with r < s, 

&f (ih, jh) + O(S2h2) 

if it is assumed, as indicated earlier, that 03 f ((i + Ok)h, jh)/&x3 is bounded. Thus, 
= (mid) 

the average and the mean of the random variable f ij take, respectively, the form 

&f (ih, jh) +O(s22u 
(14) Ox ( O(S2h2), (2r + 1)(2sh)2 

From the point of view of subsequent deliberations, it is important to note, at this 
stage, that the averaging has a linear effect on the approximation error associated 
with the accuracy of the mean, and a quadratic effect on the value of the variance. 
In fact, it is the exploitation of this difference which allows the type of results given 
below to be derived. 
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The variance of this averaged midpoint estimate is approximately 0. 125r-3 times 
the variance of the standard midpoint estimate of equation (7). If r is taken to be 
of order h-2/3, this averaged midpoint value is stable, as there is no growth of 
the variance as h -* 0. The price paid to achieve this stability is an increase in 
the approximation error, resulting from the use of mid-point formulas with a step 
size sh as well as from the averaging. Together, these two processes induce an 
approximation error of order O(h14/"9) [1]. 

2.2. Two-dimensional averaging. For the two-dimensional data Yi, j (where j 
varies as well as i), the key observation is that, in estimating the partial derivative 

OflOx, one is not limited to doing the spatial-neighbourhood averaging only in 
the x-direction, as examined and motivated above. One is now free to also do the 
spatial neighbourhood averaging in the second dimension; i.e. with respect to some 
specified choice of s, average the mid-point estimates 

pr+nkd) j = Yi-+ s,j-Ik 
- 

Yi-s,j-+-k k-r r 
J+k ~~2sh 

The clear advantage of this step is that it removes the problem of error correlation, 
because there is no duplication of the data values entering the above family of mid- 
point estimates. In this way, there is not longer a need to demand that r < s. For 
example, one could construct the estimate of fi,j as the average 

(-mid) 1 r - (tnid) 

(15) f1 2r + 1 E f2 

k=-7- 

For each i, j, this defines a normally distributed random variable with mnean and 
variance given, respectively, by 

2r + 1 E x(ih, (j+ 1c)h) + 0(h 2), 2 + h ___ 
k-rO 2(2r + 1)h2 

Here, however, one finds, on appealing to standard Taylor series result of the type 
given above, that the averaging error dominates, and the value of the mean becomes 

Of (ih, jh) + O( 2h2) 

The eifect of this type of averaging is to reduce the variance associated with the 
standard mid-point formula (7) by a factor of Q(r1/2). The cost for this reduction 
has been achieved at the expense of the size of the approximation error, which has 
been increased by a factor of order O(r2h2). But, because stability can only be 
guaranteed if r is of order h-2, the size of the corresponding approximation error 
increases, to become of order O(h-2). Consequently, t-his scheme is only convergent 
when f is only a function of the second variable. It therefore follows that the larger 

(rmid) 
step size in the scheme which generates f jj plays a crucial role. It is needed not 
only to guarantee the independence of the random variables which are averaged, 
but also to guarantee its simultaneous convergence and stability. 

Introducing a larger step size into the chosen mid-point formula which is spatially 
neighbourhood averaged in the second dimension, one obtains the following random 



1128 R. ANDERSSEN AND M. HEGLAND 

variable estimate for Ji,j: 

(, ^ (mid) 1 YiIY+s,j+k - Yi-s,j+k (16) 
~~~~~~2r + 1I~- 2sh 

k=-r 

For each i, j, this random variable has mean and variance given, respectively, by 

1 ;, 9f(ih, (j + k)h) 2 o(22h2)) i r 2 
2r + I k=- Ox X J(2 

2 

2r + I k _ (2(2r + l)sh)2' 

and, hence, 

f (ih,jh) + 0(r2h2) + O(s2h2), 2(2r + 1)s2h2 

Stability is guaranteed if rs2 is of the order of h-2. As well as the averaged dis- 
cretization error 0(s2h2), associated with the chosen mid-point formula, the spatial 
neighbouring averaging generates an averaging error of order 0((rh)2). 

For small h, one aims to balance the averaging and the averaged discretization 
error, because, if one dominated, the other could be increased without much loss 
of accuracy, but an improvement in the stability. Consequently, r and s are chosen 
to be of order O(h-2/3). Contrary to what might have been anticipated, this type 
of averaging does not improve on the spatial neighbourhood averaging in the x- 
direction. One still has a method with an accuracy of O(h2/3). 

The next possibility combines the two previous approaches. The resulting spatial 
neighbourhood averaged midpoint rule takes the formn 

(17) 

1 z Yi+t-mt+s, j+k 
- Yi+m-s, j+k 

fiJ (2r1 + 1)(2r2 + 1) k: I: 2sh 
J 

r1<S. 

The constraint r1 < s ensures that no correlated errors are generated. The mean 
and variance of this normally distributed random variable estimate of fij are given, 
respectively, by 

1 
1 r2 

f ((i + 7n)h, (j + k)h) 

(2r .+ 1)(2r2 + 1) I=-S Z=- o(S2 h 2) 

k=-r1 M=-,12/ 

Of (ih, jh) + O((r2 + r2 + s2)h2), 

and 

2a 2 

(2r, + 1)(2r2 + 1)(2sh)2 

Consequently, stability is guaranteed if r1r2s2 is of order h-2. For the reasons 
outlined above, rl, r2 and s are chosen to have the same order, which, in the 
current situation, implies r, - r2- s - O(h-1/2). Thus, as a direct result of the 
additional spatial neighbourhood averaging in the y-direction, one obtains a stable 
scheme which has an accuracy of 0(h). In this way, dimensionality has become 
a blessing for numerical differentiation, because it has allowed one to construct a 
stable scheme with an improved accuracy over that obtainable from the standard 
schemes. 
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2.3. Implementation. The estimate fi can be evaluated in two separate ways. 
On the one hand, one first computes the differences 

Yi +m +s, jk - Yi?rn,- s, j-t-k 
Ui+-n-j?k j- jsh , =-r, ,rl, m.=-r2, ,r2, 

and then averages them to obtain 

A 1 rl r2 

(2r1 + 1)(2r2 + 1) Z; Z m 
k=rim-r2 

On the other hand, one first constructs the averages 

1 ri r2 

+t,J :(2r1 + 1)(2r2 + 1) k= Z Yi?t?m, jmk, t = S 

k=-r1 m=-r2 

and then computes the difference 

wi+8' j - Wi-s, j 
f i,j- 2sh 

For the evaluation of a single derivative, the first implementation involves 

2(2r, + 1)(2r2 + 1) - 1 additions (subtractions) and (2r, + 1)(2r2 + 1) divisions, 
while the second involves the same number of additions, but only 5 divisions. Conse- 
quently, if divisions should be minimized, then the second implementation is always 
the preferred option. On the other hand, because one is dividing by terms which 
are not dependent on the specific locations of the data points, both can be rewritten 
so that the division by 2(2r, + 1)(2r2 + 1)sh is performed as the last step. In this 
way, the goal reduces to one of minimizing the number of additions, and, hence, 
the minimization of the number of times that the expensive averaging-step must 
be performed. If only a single partial derivative is required, then both schemes are 
equivalent, since they both require the averaging to be performed twice. However, 
the situation changes when more complex partial derivatives are required over an 
array of locations, which is a commonly occurring situation in various applications 
including, for example, the evaluation of a two-dimensional velocity field. 

In fact, the results are slightly counter-intuitive. Consider an N x M (square 
lattice) array of locations, over which some specified partial differential operator is 
required. For the gradient Vf = (Of/xI1, f/&x2), the first procedure reduces to 
initially computing the differences 

Uij: Yi+8s, j - Yi-si, j 

and 

Vi,J :=Yi, j+s2 -Yi, j-82 

on the N x M array, and then evaluating the gradient using the two averaging steps 

1 Z Z 'U?rm 
r2 

2(2r, + 1)(2r2 + 1)slh k=-rl m=-r2 

and 

1 1 r2 

'd '_ 
2(2r, + 1)(2r2 + 1)s2h 

k=r M V=-j2 

This procedure therefore involves 2NM applications of the averaging step. 
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On the other hand, the second procedure reduces to initially performing the 
following sumnmations for the averaging: 

'w,j: E 
>3 

Yi+7mj?,j 
k'=-'7'1 772~=-r2 

on the N x -Al array, and then evaluating the gradient as 

(f~~~77 V _ t1i+ W.j- U- S I, 

xlrJi3 -2(2r1 + 1)(2r2 + j)slh 

and 

Wi, 'j+52 WUi1 5 
fX2 )';,j =2(2r, + 1)(2r2 + 1)s2h 

Typically, since it only involves NM applications of the averaging step, the sec- 
ond procedure is (approximately) twice as fast for the numnerical evaluation of the 
gradient comnputation as the first. 

For the computation of the divergence F = V (f, g) = (Of/IOX + &g/&X2), 
it is the first procedure which has the better complexity. One starts with the two 
functions f and g, and then computes derivatives which are added to give the scalar 
result. For the first procedure, one combines the comnputation of the differences and 
their addition in order to deterrrmine the values 

F?,j := fi+-s. j-fi-sj + gi, j+s 
- 

gi, j-s, 

on the N x MW array, and then evaluates the divergence as 

I 
'1 7r 

Fi j 2(2r, + 1)(2r2 + 1)sh > Z itm j?k, 

k= rn?-jM -r2 

which only involves NAI applications of the averaging step. In order to reduce the 
numnber of divisions to one, which is performned as the last step, one mnust choose 
s1 = 82 = s. For the second procedure, twice the numnber of applications of the 
averaging is required. One initially computes the summations 

WiZj Z fi+m, j+k 
k-- 1 f7=- 7 2 

and 
1 72 

Zij > E 3 gi+m4 it k, 
k=-ri 71 721=-'1'2 

on the N x Ml array, and then evaluates the divergence as 

Wi+s' j - 
Wi-s j + Zi, j - Zi. --s i I - 2(2r1 + 1)(2r2 + l)sh 

The evaluation of the curl (i.e. Of/IX2 - 0g/1xi) proceeds in exactly the samne 
way as for the divergence. 

Remark. This ability to mnove the division to the last step, and, thereby, reduce 
complexity considerations to the numnber of averaging steps performed, ceases, if 
the grid does not remain a square lattice. 
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3. HIGHER ORDER DERIVATIVES AND HIGHER DIMENSIONS: 

STABILITY AND CONVERGENCE 

3.1. Basic theory. The basic method of the previous section is now generalised 
to the numerical evaluation of the q-th order (homogeneous) differenitial operator 

Df(x) E p f(x) 
appq 1IP=q 

where the function f : Q c Rd I R is assumnled to have sufficient smoothness and 
the cp are constants. The approximation is computed from the following set of 
observed function values: 

yJ = f (jh) + ej, h = l/n, j (il,. ., id) C I {O,1 ... ,}dI 

where I denotes the index set of the locations of tlie data, hI C Q, and the ob- 
servational errors c; are normally distributed independent random variables with 
expectation 0 and variance a2. The multidimensional data array with components 
yj will be denoted by y, while the linear space of all such multidimensional data 
arrays will be denoted by R'T. Furthermore, let 

fj = f (jh), h = 1/n, j = (ii, id), 

and let f c IR' denote the multidimensional array containing the exact function 
values. The Laplacian 

d &2f 

Df = Zf X2 

is an example of such a differential operator. 
The generalization consists of two steps; namely, an averaging step followed by 

a differentiation step. In order to simplify the algebra, it is assumed that y has 
been extended periodically to Zd. Let V = {-ri,... ,ri} x . x {-rd. rd 

where ri > 0 are given initegers, define the index set of the template on which the 
averaging is performed, and MAJv denote the standard averaging operator on this 
template, where each data point averaged has equal weight. The index set V C I 
will be called the support of Mv. A smooth estimate fj of fj is generated by 
applying the averaging operator Mv to the data y, 

(18) fj = (Mvy)j Yj -k,j 
i key/ 

where IV} denotes the size (number of members) of the index set V. Because of the 
way in which V has been defined, MAII, takes the form of a convolution. 

Since, in general, f is not periodic, the estimates fj will only be good approxi- 
mations of fj when j E I', where I' is the index set of the array of averaged values, 
i.e., the maximal set such that 

IV + V c I. 

For the error analysis presented below, the second derivative of f will be required. 
The Hessian of f will be denoted by 

_H2f (X) 1 
Hf (x) = 

I__ 

-O x 
j=1..Id 
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and its matrix 2-norm by fl Hf (x) 1. The second moment of the characteristic func- 
tion of V is defined by 

(19) 8I2(V)) > 1k 2E||j(r- + 1) (< 3||r 1)1 

where IIk112 = kl2 + + k2 and r JO, 

Proposition 1. 1ff E C2(Q), fj f(jh), and f = Mvf, then 

-fi 
j < 2 IIHf(z)I /J2(V), j E I', 

where Izi - jh < hrj, i 1,... , d. 

Proof. From Taylor's theorem, one obtains 

fl-k= f((j - k)h)= f(jh) - hVf(jh)Tk + Ih2kTHf (')k 2 

for some E jh+ hV. Since V is symmetric, averaging over V eliminates any linear 
expression in k. In particular, Ekex/ k = 0. The proposition is proved by applying 
Mv to the the standard bound 

IkTHf (z)kl < Ilk 12 IHf (z') 11 

and then invoking the convexity of the averaging performed by MIIV, the conti- 
nuity of the L2-norm (equivalent to the largest singular value), and the Bolzano 
intermediate value theorem for IIHf (z') I. D 

This approximation error can be viewed as an undesirable side-effect of the aver- 
aging. On the other hand, its advantage is the poten-tial reduction it can generate 
in the variance of the random errors in the data. The nature of this reduction is 
encapsulated in the following proposition. 

Proposition 2. If the errors Ej are i.i.d. P(o, 2) random variables, then the 
(AlMv E)j are P1(O, au2/ V ) random variables. Furthermore, if j -j' 2V, then the 
random variables (MvE)j and (M1,v)y, are independent. 

Proof. The variance reduction is standard. Furthermore, (lA/Ic,)j depends only on 
cj for i E j + V. Consequently, if j-j' - 2V, then (MAJvE)j and (_Mv c)j depend on 
disjoint sets of components of c, and, therefore, are independent. D 

The condition j -j' 2V is equivalent to the condition Iji - "I > 2ri + 1 for 
i=1,... ,d. 

The numerical evaluation of the derivative Df on the data y at the point j can 
be formulated as the application of a linear operator A[s] on RI defined by 

(A [s] y)j =E aj -i Yi, 
iel 

where 
1. the coefficients ai are assumed to be periodic with period I, 

2. with respect to some given index set s = (S1, ... , Sd) E Nd, which charac- 

terises the support (spacing) of the points at which the operator A[s] acts, 
the components ci are only nonzero, if, for ki E Z, i = 1, ... d, 

i = (klsI, * * * , kdSd), 
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3. the difference approximation A[s] approximates the differential operator D in 
the sense that, if f'j = (Df)(jh) and f = A[s] f, then 

(20) Il/-f;' < h211sI12C(f), 

where C(f) depends on the values of certain q + 2nd partial derivatives of f. 
As the agj are periodic, the linear operators A[s] correspond to convolutions. One 

is now in a position to combine the numerical differentiation operator A[s] with 
the averaging operator Mv, in order to construct stable numerical differentiation 
rules. In fact, because 1VI1, is also a convolution, it commutes with A[s], i.e., 

MIvA[s] = A[s]Iv. 

Examples of such numerical differentiation rules include the well-known midpoint 
rules discussed above in Section 2. 

The following proposition yields a bound on the approximation error of the 
averaged finite difference. 

Proposition 3. Let Ml, be the averaging operator with V {-ri,. . .,r} x ... x 

{-rd,... ,rd}, let A[s] be a difference operator, and let f = A[s]Mvf. Furthermore, 
let f!' (Df)(jh). If the function f is such that Df E C2, then 

Ifl-fj I < h2 llsl2C(f) + - 
IIHDf 1i 82(V), 2 

where I' C I is the index set of the array of averaged values. 

Proof. n9om the triangle inequality, one obtains 

li-fj; < fj- wjl+lwj-fj';, 
where w = Mf'. The first term on the right side can be written as (Mvu)j, where 
u = A[s]f - f'. The values kujl of the components of the multidimensional array 
u are bounded by h211sI12C(f). Furthermore, the averaging operator is uniformly 
bounded, as can be proved by applying Schwarz' inequality. In particular, if luj I < c 
for some constant c, then I(Mvu)jl < c, since 

(Mlvu)j < -1 2 kV 
Z Ujk. 

Thus, the effect of the averaging Mvu can be bounded by 

If j-wjI = I (MAvu)jI < h2 llsKl C(f). 

For the estimation of the second term in the triangle inequality, one uses the smooth- 
ness of f (i.e., Df E C2) and Proposition 1 to obtain 

h 2 
-l 2 JjHDf(v)jj A2(V), j E l', 

where the choice of v is characterised in Proposition 1. The required bound of this 
proposition is now an immediate consequence of these two results. D 

One now turns to the estimation of bounds for the amplification of the measure- 
ment errors. A first lemma shows that, if the "spacing" s of the finite difference 
formula is sufficiently large, then the error amplification is essentially the 2-norm 
of the coefficients of the difference stencil (template). 
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Lemma 1. Let Mv be the averaging operator with V {-r1,... ,ri } x ... x 
{-rd,.. ., rd}, and let A[s] be a difference operator. If Ej are independent normally 
distributed random variables with expectation 0 and variance a2 and if 

Si > 2ri + 1, 

then the (j := (A[s]MvAcE)j are normally distributed random variables with expecta- 
tion 0 and variance 

___2 2 2_ 

var((j ) lVI E Cfi = lA[s]e 2 

where e is the array with all its components zero except for the origin j = 0, where 

ej = 1. 

Proof. Let r MvE. Because Mv and A[s] commute, it follows that 

( = MvA[s]E = A[s]MvE = A[s]rj. 

The linearity of the operators involved implies that E(() = 0, where E(.) denotes 
the expectation operator. Thus, one obtains that 

var((j) = E(()= aj-_jaj-kE(qik)- 
i,keI 

The only terms which contribute to the sum are the ones for which j - i = 
N1s and j - k = N2s, and, for these terms, k - i = N3s, where the N-t = 

diag(rtl,... ,nd), ni M , t = 1, 2, 3, denote integer matrices. Furthermore, 
for k - i , 2V, E(rqiiqk) = 0. Since, for si > ri + 1, the only point Ns which is an 
element of 2V is 0, the result of the lemma follows. D 

The next lemma yields a bound for the error amplification. The condition on A [s] 
guarantees the validity of the intermediate mean-value theorem for differentiation, 
and holds for all standard finite difference formulas. 

Lemma 2. Let A[s] be a difference operator which satisfies the consistency condi- 
tion that, for all periodic f with continuous Df, there exists, for every k E I, a 
vector z E Q such that [A[s]flk = Df(z). Then 

d 

IA[s]ell < (21rq-gd ICP I IS-(i+l 

lpl=q i= 

Proof. Let f(x) = 
Hld I fi(xi) with 

n/si-1 

fi(xi)= exp(- 2-7vr-lk xi 
k=O 

It follows that f is periodic and C?. Furthermore, fi(sih k) is one, if k 0, and 
zero otherwise; i.e., f(x) is a Lagrange function for the grid points given by Ns. 
This proves that the function f interpolates e. Consequently, if fj = f(jh) then 
A[s]f = A[s]e and, for every k, there Is a z such that (mean value theorem) 

[A[sle]k = Df(z). 
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This proves that f interpolated e. Since the derivatives of the component functions 

fi are bounded by 

(dPi fi (xti ) (27rn )' 

it follows that, since n 1/h, 

d (2 ) Pi lDf (z) I p f 

lpl=q i 

Because these bounds are independent of z, and because at most Hdi=1 of the 

components of A[s]e are different from zero, one obtains the bound 

(!jd 1/2 d P 

||A[s]e|| < ZI|- E lc ( 2 
)P 

Rearranging terms yields the given bound. D 

For many practical stencils this bound is rather pessimistic, as it only assumes 
consistency. However, often one can explicitly compute A[s]e and apply Lemma 1 
directly. 

Proposition 4. Let Mv be the averaging operator with V {-ri ...., ril } x x 

{-rd,... ,rd}, and let A[s] be a difference operator, In addition, let cE be i.i.d. 
normal random variables with expectation 0 and variance a2, and ( = A[slMvc. 
Furthermore, assume that the consistency condition of the previous lemma holds 
for A[s]. If 

Si > 2ri + 1, 

then (j are normally distributed random variables with expectation 0 and variance 
bounded by 

d /d 

d 
var((<) <(2?)2qU2 h (2q+d) ]7J(2r- + 1)-1 t E 1 l i S 

lp=l q= = 

<~~~~~(~ (r)cJh(+)|E C l1 k!(2r.i + lYiTh?1)) 2 

Proof. The proposition follows by combining the results of the two previous lemmas. 

A numerical differentiation rule is said to be stable, if the error amplification is 

bounded. As a consequence of the previous proposition, one obtains 

Corollary 1. If, for all cp 74 0 with p = (pl,... ,Pd), there is a constant K such 
that the inequality 

d 

7J(2ri + l)Pi+l > Kh-(q+d/2) 

i=l 
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holds, then the averaged differentiation rules, defined above, are stable. They are 
also convergent, if, for all i = 1,... , d, there exist constants K1 and K2 and 
01,02 < 1 such that 

si < Kih-'1 and r% < K2h-02. 

Any realistic template (stencil) V must not be too elongated in any one of the 
coordinate directions. A natural constraint, which achieves this, is to require that 

IVl/d 
rl ' r2 . ..r = 

2 
On the other hand, from the earlier assumptions about the index set I it follows 

that 

n + 1 - II1/d 

and hence 

h -_/d 

In this way, the study of the stability and convergence of multi-dimensional 
numerical (partial) differentiation reduces, for a given partial derivative and multi- 
dimensional space with dimension d, to specifying how the size of IVI must change 
relative to the size of III. For example, if pi = p, i = 1, 2, ... , d, then q = pd. It 
therefore follows from Corollary 1 that stability is guaranteed if 

(2r )q+d > Kh- (q+d/2) > Kn (q+d2 

and, hence, that 

TV 

(P+l) > 
K2-(q+d/2) 1Ip+l/2 

This represents a heuristic proof that stability is guaranteed if, for a suitable 
chosen v, 

iVi oV I6, 0OK < < 1. 

The admissible range of values of v which guarantee both convergence and sta- 
bility now follows on combining this result with the estimate of Proposition 3. 

3.2. Implementation. As for the gradient in two dimensions (cf. Section 2.3), 
the way the computations are performed can affect the number of floating point 
operations required to evaluate multi-dimensional numerical derivatives. In order 
to quantify this, it is necessary to examine the complexity of the various implemen- 
tations. 

For example, the evaluation of any partial derivative over the whole domain in- 
volves the formation of the double matrix vector product A[s]Mvy. This is done in 
two stages which essentially consist of averaging and differencing. The division asso- 
ciated with the averaging stage is moved into the differencing stage. Consequently, 
the first stage consists in forming the sum 

Uj = E Yj-k, jE I' 
keV 

These sums are only computed for j E I', as the function is not assumed periodic. 
(The evaluation of derivatives near the boundary will involve different approxima- 
tions, which are not discussed in this paper.) The actual evaluation of the double 
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matrix vector product will involve II' ( V - 1) additions, but no multiplications 
nor divisions. The difference step reduces to the evaluation of 

|V| (A[s]u)j = Z(ck/ V)uj-k, j E I 
kcl 

It is assumed that the coefficients aek/ VI have been precomputed. The differences 
are only evaluated on the set I", which guarantees that only components of Uk 
with k E I' are used. An essential observation is that the aek are only zero for 
a small subset of indices which shall be denoted by S. Thus, the difference step 
requires I" | ( S - 1) additions and 1I" - ISI multiplications. Except for the trivial 
precomputation step, mentioned above, no divisions are required. 

The total amount of operations for the formation of A[s]Mvy is the sum of these 
two expressions. For very large data sets, the number of data in the vicinity of 
the boundary will be small when compared with the number in the interior of the 
domain I. Consequently, I' and I" are asymptotically of the same size as I, and 
the total number of operations required to form A[s]Mv becomes I I ( V + IS I-2) 
additions and III . SI multiplications. (In the sequel, only asymptotic estimates 
will be derived.) Furthermore, as discussed in the previous section, the size of V 
is related to that of I by a relationship of the form IVI = clIl', where 0 < v < 1. 
Finally, on modern computers, floating point additions and multiplications require 
about the same number of operations, and so the total floating point operation 
count is asymptotically III(c I>' + 21SI - 2) = O(TI"+1). 

An alternative way to proceed is to compute the acf ion of A [s] Mv on some given 
data y. 'Here, one turns to the application of the fast Fourier transform (FFT), 
where the complexity will be O(I1 log2(I)). Thus, there is a crossover point defined 
by an equation of the form 

IIJ" = Clog2(TI) 

where C is a constant depending on the choice of V and on how the FFTs are 
performed. Consequently, for larger I, the FFT approach will be more efficient. 
For this "indirect" method, a d-dimensional FFT will be required. An efficient 
implementation for a general d can be found in [9]. 

For the evaluation of a gradient, or Hessian, there will be several, say t, inde- 
pendent derivatives to be computed. If these derivatives are again required over 
the whole domain, this reduces to the evaluation of a matrix vector product of the 
form 

(AI[s],... ,At[s])TMAlvy. 

If the averaging is performed first on the scalar data, this will require (asymptoti- 
cally) I I ( V - 1 + t( S - 1)) additions and t I SI multiplications. On the other 
hand, if the difference operators were applied first and the results were all averaged 
independently, then the number of operations would be t times what is needed for 
the computation of one such partial derivative. Consequently, differencing first will 
be much more expensive than averaging first. 

On the other hand, if a reduction operation takes place (such as occurs in the 
evaluation of a divergence), the differencing should be performed first; i.e., evaluate 
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the formula as 

Mv(AI[s],... ,At[s]) K] 

Compared with gradient-like operations, an additional summation must be per- 
formed which involves (t - 1)11 additions. Consequently, one requires a total of 

*I (IVI + t S - 2) additions and tI I S multiplications. 
When either ISI or IVI is large, FFT's, based on the discrete Fourier transform, 

can be applied to the stencil of the averaging. The stencil of the averaging, or 
multi-point differencing method, can be represented by 

MT A[s]Tel. 

This stencil can be precomputed with little work. Because the supports for the 
differentiation and the averaging do not overlap, the number of nonzero elements of 
the stencil is ISI I V . Consequently, the application of the stencil requires SI IV I-1 
additions and ISI IVI multiplications. Having computed the stencil, we can apply 
it to determine the derivative at a variety of points, and in particular, all points 
of I". Note, however, that for this the nuLmber of additions and multiplications 
required would be (asymptotically) III (SI IV I- 1) and III S II V . This is much 
more than the separate application of A[s] and MA/Iv uses. However, if the values 
of several derivatives at only one point are required, then the number of additions 
and multiplications reduces to tS IVI - 1 and tIS IVI. A similar estimate holds 
if a set of derivatives are only required at a limited number of points 

As a conclusion, wThen implementing algorithms for the computation of deriva- 
tives, one should carefully consider the characteristics of the problem in order to 
choose an efficient method. In summary, if derivatives on the full range of points 
in the domain are to be computed, one fares best when the averaging and the dif- 
ferencing are done separately. For the computation of a set of different derivatives 
of the same scalar function, one should consider averaging before differentiating. If 
the result required is a linear combination of a set of derivatives of multiple func- 
tions, one should do the differentiation first and the averaging second. For large 
and complicated derivatives and large averages, multidimensionial FFTs should be 
used for best performance. 

4. APPLICATION AND EXEMPLIFICATION 

4.1. Applications. The above analysis has been performed under the assumption 
that the errors are genierated by iid Gaussian random variables, as this yields a 
framework in which explicit results about the trade-off between conlvergence and 
stability can be constructed. Nevertheless, on various grounds, it can be argued that 
the results apply more generally to a wide variety of error situations. For example, if 
the errors are positively correlated, then the correlatio.n process will tend to reduce 
the amount of scatter in the errors locally, with the potential stability associated 
with the differentiation of the corresponding data improved. An illustration of this 
point can be found in terms of the behaviour of correlation functions in spatial 
statistics [5, Ch. 2]. 

Any process involving a spatial aspect leads naturally to the need to evaluate par- 
tial derivatives. An essential feature of such applications, of which fluid dynamics 
is a good example, is that various combinations of partial derivatives, which define 
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appropriate physical concepts, are required rather than single partial derivative. In 
fluid dynamics, a classical example is the (two-dimensional) vorticity 

w(x,y,tY)= ( ay (x,y , t), 

where the (two-dimensional) velocity vector v has the components (v1, v2). 
The velocity data dI (i(j) = vi(xi,yj) + ij, 1 1, 2 is often the end product 

of a preprocessing, using conditional averaging [6], of the time series records of 
the measurements of the velocity components of the fluid flow at a grid of points 
(xi, yj) by laser doppler anemometers. In the study of forced convection and vortex 
shedding [4], estimates of the vorticity are required for input into the Howe theory 
of aeroacoustics. 

The estimation of the distribution and size of thermal and magnetic sources, as 
well as fluid input sources into confined aquifiers [3], reduces to the evaluation of 
multi-dimensional Sturm-Liouville (Laplacian) operators on observational data. 

In maany practical applications, the components of some underlying stress tensor 
must be estimated. Because the continuity and momentum conditions only involve 
three equations, whereas a symmetric stress tensor has six components, it is more 
natural to first compute the displacements or velocities and then evaluate the conm- 
ponents of the required stress tensor, than to compute the components of the stress 
tensor directly, since that would involve the formulation of additional consistency 
conditions in order to obtain six equations for the six unknowns. 

4.2. Computational example. The proposed method is now demonstrated on 
simulated data. All the computations were done with MATLAB. The chosen func- 
tion was 

f (X y, z) = exp(-X 2 _y2 _ z2 

and the simulated data had the form 

di,jk = f (ih, jh, kh) + i j.k7, i, jk = -n) 
... In, 

where h = 2/(n - 1) and 6i,jk are independent normally distributed random vari- 
ables with expectation 0 and standard deviation C = 5/1000. 

From the simulated data, the Laplacian iAf has been computed using averaging 
and the midpoint rule as proposed in the previous sections. For averaging, the set 
V = -,... ,r3 was used and the standard 9-point stencil was chosen for the 
discrete Laplacian A[s] where s = (s, s, s) with s 2r + 1. Now one gets from 
equation (19) 

b2 (V) = 'r(r + 1 ) (n2- 1). 4 
The Laplacian and the Hessian of the Laplacian of f can be computed, and one 
obtains (with some assistance from the MAPLE package) the bound 

JHAffl < 20. 

The constant C(f) is obtained from a Taylor expansion of the truncation error of 
the stencil, and one finds that 

1 =6 4f a &4f +<4f 
0() 36 &x4 + y4 &z4 - 
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TABLE 1. Root mean squared error for the 3D Laplacian. 

n 9 17 33 65 129 257 
s 2 2 4 6 9 15 
error 0.032 0.020 0.013 0.0097 0).0083 0.0059 

The approximation error bound from Proposition 3 thereby becomes 

Ifj' < 3h2s2 + 2.5h2 -1). 

The variance bound from Proposition 4 is 

var((j) < (2w)4uX2h-7s'0. 

This bound was derived for a very general case, but here one can actually compute 
the variance explicitly. One can see that 11A[s]e 12 = 42s-4h-4, and so one obtains 
from Lemma 1: 

varO= 4272s-7h-4. 

Though the choice of the parameter s is crucial, its estimation is outside the 
scope of this work. For example, in cross validation s is estimated as the minimizer 
of an estimate of the mean squared error [12]. If such an estimate is unbiased, its 
expected value is bounded by 

30.2s4h4 + 42u 2s-7h-4 

as can be seen from the previous approximation estimate and the variance formula. 
For demonstration purposes, the s chosen here is the minimizer of this function of 
s. This gives 

s= [1.1h-8/1102/ 

where 0-] denotes the next larger integer. 
In Table 1, the root mean square errors (scaled with i\(f)(0)) are displayed. One 

can see clear convergence, and closer inspection reveals that the convergence rate 
is O(h6/11), as predicted by the theory. In particular, Table 1 shows that conver- 
gence occurs as h tends to zero. If a similar method is applied to one-dimensional 
data to compute second derivatives, it can be shown that the convergence rate is 
O(h2/9). Thus the convergence rate in h for the three-dimensional data is 2.5 times 
higher than for the one-dimensional data. This demonstrates the effectiveness of 
the volume averaging compared with lower dimensional averaging in increasing the 
convergence, and, thus, the beneficial effects of dimensionality. Note that there is 
a slight trade-off between convergence in C and h. 
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